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Abstract

Expressions are derived for the ensemble means and variances of the subsystem energies of built-up systems comprising

two subsystems. The approach is based on the Statistical Energy Analysis of two spring-coupled oscillators and sets of

oscillators, or coupled continuous subsystems, described by Mace and Ji [The statistical energy analysis of coupled sets of

oscillators, Proceedings of the Royal Society A 1824 (2007)]. The paper focuses on spring coupling, although similar results

hold for more general forms of conservative coupling. Randomness is introduced into the system by assuming that the

natural frequency spacings in each subsystem conform to certain statistical distributions. A ‘‘coupling coefficient

parameter’’ is introduced which, together with the ‘‘coupling strength parameter’’ defined by Mace and Ji (2007), accounts

for the statistics of the coupling stiffness. Various approximations and assumptions are made. It is seen that the variance of

the excited subsystem depends primarily on the variance of the input power, which in turn depends on the variance of the

number of modes of the excited subsystem in the frequency band of excitation and their mode shapes. The variance of the

undriven subsystem, on the other hand, depends primarily on the variance of the intermodal coupling coefficients, which in

turn depend on the variances of the number of in-band modes of both subsystems and their mode shapes. The cases of

Poisson and Gaussian Orthogonal Ensemble natural frequency spacing statistics are considered. Numerical examples of

two plates coupled by one or a number of springs are presented.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Statistical Energy Analysis (SEA) is commonly used for high-frequency modelling of complex systems [2–3].
The whole system is divided into subsystems connected by interfaces and the response is described in terms of
the time- and frequency-averaged subsystem energies and input powers. Compared to deterministic Finite
Element Analysis (FEA) in which a detailed, computationally expensive model is formed and the system
properties are assumed to be known exactly, the SEA approach is very appealing for the following reasons: (1)
it is physically simple and easily understood; (2) the effects of changes and modification to parts of the
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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structure, and hence design changes, can be easily predicted; and (3) the relevant computational cost is very
small. In the past decades, SEA has received much attention and results are available in many publications,
e.g. Refs. [2–6]. However, there are also some difficulties in the application of SEA. First of all, SEA is not a
systematic procedure in that the SEA equations involve a number of explicit and implicit assumptions and
approximations, the validity of many of which are unknown. Secondly, the prediction of coupling loss factors,
being the most important SEA parameters, is often problematic. Finally, there is an issue of estimating
response variability. These SEA problems have been addressed by many researchers. For example, in Ref. [7],
Keane and Price examined the SEA equations with particular reference to the problem of two multimodal
subsystems, strongly coupled at a single point. Maxit and Guyader [8] proposed the modal energy distribution
analysis (SmEdA) approach, in which it is not assumed that equipartition of modal energies occurs. Mace [9]
used a modal approach to investigate the conditions under which a built-up structure can be described by an
SEA model and ‘‘quasi-SEA’’ approach was developed.

There has been much interest in the statistics of the energy response of built-up systems as well. The earliest
works concerning the variance of the band-averaged energy of built-up system was that of [4,13,14] and
summarized by Lyon and DeJong in [2]. This considered coupled subsystems that have Poisson natural
frequency statistics. The most comprehensive analysis so far regarding variance prediction of a built-up system
is that of Langley and Brown [10,11] and Langley and Cotoni [12] in which Gaussian Orthogonal Ensemble
(GOE) natural frequency spacing statistics were assumed. In Ref. [10], the ensemble statistics of the response
to harmonic excitation of a single dynamic system were investigated, the system natural frequency spacings
being assumed to conform to Poisson, Rayleigh and GOE statistics. Then in Ref. [11], the theory for harmonic
excitation was further extended to band-averaged response of the random system. In Ref. [12], a variance
prediction method was developed for the energy levels in a general built-up structure within the context of
standard SEA, each subsystem being assumed to conform to GOE natural frequency spacing statistics. Both
variance theories are based on the first order expansion of the conventional SEA matrix equations, and a brief
review of the main results is given in the appendix.

In Ref. [1], the SEA of coupled oscillators and coupled sets of oscillators was revisited. The oscillator
properties were assumed to be random and ensemble averages of SEA parameters found. In particular,
account was taken of the correlation between the coupling parameters for the oscillator pairs and their
energies. Consequently, some of the assumptions of conventional SEA were removed or relaxed. Various
observations were made which depart from these earlier works, e.g. the coupling power and coupling loss
factor (CLF) are governed by the ‘‘strength of connection’’ and the ‘‘strength of coupling’’ parameters; the
CLF is proportional to damping at low damping and independent of damping in the high damping limit,
which corresponds to the weak coupling limit; equipartition of energy does not occur as damping tends to
zero, except for the case of two oscillators which have identical natural frequencies. It was found that the
coupled oscillator theory [1] and conventional SEA [2,4,13,14] are equivalent for weak coupling [1].

In this paper, based on the coupled oscillator theory described in Ref. [1], general formulas are developed in
Sections 2 and 3, respectively, for the ensemble mean and variance of the energies of two coupled oscillators
and two sets of coupled oscillators. Throughout, spring coupling is assumed, although similar behaviour is
seen for general conservative coupling [1]. Randomness in the system is introduced by assuming that the
natural frequency spacings of each subsystem conform to certain, known, statistical distributions. The spectral
densities of the excitation are also assumed to be random. In deriving the variance expression in Section 3, a
‘‘coupling coefficient parameter’’ is introduced. This, together with the ‘‘strength of connection parameter’’
defined in Ref. [1], accounts for the statistics of the coupling stiffness. Theoretical implementations are made
in Section 4 for two classical forms of statistics of dynamic systems, namely Poisson and GOE natural
frequency spacing statistics. Numerical examples of two plates coupled by single and a number of springs are
given in Section 5. Results are summarized and discussed in Section 6.

2. Statistical energy analysis of two coupled oscillators

Consider two oscillators with masses m1 and m2, damping constants c1 and c2 and stiffnesses k1 and k2
connected by a spring of stiffness k, as shown in Fig. 1. The oscillators are subjected to two, uncorrelated,
band-limited, white noise excitations with spectral densities Sf1 and Sf2 over a frequency band O. The
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Fig. 1. Two spring-coupled oscillators.
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time- and frequency-averaged oscillator energy and input power are [1,2]:

P1 ¼
1

O
pSf 1

m1
(1)

E1 ¼
P1

D1
�

k2
ðD1 þ D2Þ

m1m2D1

1

Q

P1

D1
�

P2

D2

� �
(2)

Q ¼ ðo2
1 � o2

2Þ
2
þ ðD1 þ D2Þðo2

2D1 þ o2
1D2Þ þ

k2
ðD1 þ D2Þ

2

m1m2D1D2
(3)

where o1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1 þ kÞ=m1

p
and o2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2 þ kÞ=m2

p
are the natural frequencies of oscillators 1 and 2 when the

other oscillator is held fixed, and D1 ¼ c1/m1 and D2 ¼ c2/m2 are the corresponding damping bandwidths of
the two oscillators. Throughout, similar expressions hold for oscillator 2 by reversing subscripts. In the above
equations, it is assumed that the system damping is not very high, so that D1,25O, and that O is wide enough
to include both natural frequencies o1 and o2.

In the above, Q is a constant which is determined by the properties of each oscillator and the coupling
element between them. Also it is seen that the energy of oscillator 1 comprises 3 components: (1) the energy
D1/P1 when the oscillators are uncoupled; (2) the energy ejected to oscillator 2 through the coupling, which is
proportional to the external input power to oscillator 1; (3) the energy injected from oscillator 2 through the
coupling, which is proportional to the power input to oscillator 2.

2.1. Ensemble mean and variance

Now assume that the system properties and the excitation spectral densities are not known exactly but are
random. The randomness is introduced by assuming the natural frequencies o1 and o2 are distributed
randomly within the frequency band O. The mass, damping and coupling stiffness are assumed constant. The
excitation spectral densities are also assumed to be random and uncorrelated. (This introduces a contradiction
in that, for given mass, the natural frequencies depend on the stiffnesses. However, the sensitivity of the
oscillator energies with respect to the stiffnesses are relatively very small compared to the sensitivities with
respect to the difference in the natural frequencies, which arises in the term Q in the denominator of Eq. (2),
and of the spectral densities, so that negligible errors arise from approximating the stiffnesses by their mid-
band values.) The ensemble average input power and oscillator energy are [1]:

P1 ¼
1

O
pSf 1

m1
(4)

E1 ¼
P1

D1
�

k2
ðD1 þ D2Þ

m1m2D1
E

1

Q

P1

D1
�

P2

D2

� �� �
(5)

Here both d and E[d] represent the expectation over the ensemble. Eq. (4) shows that P1 and P2 do not
depend sensitively on the oscillator properties, so that typically the variations of P1 and P2 are relatively very
small compared to those of 1/Q, which depends sensitively on the spacing of the oscillator natural frequencies
in particular.
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An approximation is now introduced by assuming that P1, P2 and 1/Q are statistically independent. Eq. (5)
then reduces to

E1 ¼
P1

D1
�

k2
ðD1 þ D2Þ

m1m2D1
E
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Q

� �
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�

P2
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� �
(6)

From Eqs. (2) and (6), it follows that
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(7)

Eq. (7) can be re-written as

E1 � E1 ¼ 1�
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(8)

Hence Eq. (8), after some manipulation, yields
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E
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Here Var[d] represents the variance.
In Ref. [1], two parameters were introduced to describe the coupling dynamics. The strength of coupling is

defined by

g2 ¼
k212
D1D2

(10)

while

k212 ¼
k2

m1m2o2
(11)

is the strength of connection and o is the centre frequency of the frequency band O. Weak coupling
corresponds to g251 [1]. Broadly, g2 quantifies the effects of damping and the relative effects of energy
dissipation and energy exchange between the oscillators and, below, the sets of oscillators. The strength of
connection k12

2 indicates whether the modes of the coupled system are localized within one or other oscillator
(or set of oscillators) or are global. See Ref. [1] for further discussion. An approximation to Eq. (9) can be
made for the case of weak coupling, which is the case of most practical importance and the case which will be
considered in detail in this paper. Since P1 and P2 are uncorrelated then the effects of the individual excitations
can be superposed. It is sufficient then to consider the case where P2 ¼ 0. If k2/(m1m2Q)51 (which is always
the case if the coupling is weak, i.e. g251) and if Var[P1] is small compared to P

2

1, then variances of the
energies of oscillators 1 and 2, by Eq. (9), can be approximated, respectively, as

Var½E1� �
Var½P1�

D2
1

þ
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m1m2D1
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D1

� �2
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Q

� �
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Var½E2� �
k2
ðD1 þ D2Þ

m1m2D1
E

1

Q

� �� �2
Var P1½ �

D2
1

þ
k2
ðD1 þ D2Þ

m1m2D2

� �2
P1

D1

� �2

Var
1

Q

� �
(13)

The terms on the right-hand side of Eq. (2) are statistically independent. For the excited oscillator, it is seen
from Eq. (12) that variations of the force spectral density Sf1 across the ensemble contribute to the first term,
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while the second term arises from variations in 1/Q which in turn arise from variations in the natural
frequencies and their spacing. The variance of the energy of the excited oscillator (Eq. (12)) depends primarily
on that of the input power so that the second term can usually be neglected. However, the variance of
the unexcited oscillator’s energy (Eq. (13)) depends primarily on the variations in 1/Q, and the first term
can therefore usually be neglected. As a result, the variance expressions in Eqs. (12) and (13) reduce
approximately to

Var E1½ � �
Var½P1�

D2
1

(14)

Var½E2� �
k2
ðD1 þ D2Þ

m1m2D2

� �2
P1

D1

� �2

Var
1

Q

� �
(15)

3. Two coupled sets of oscillators

In this section, the results for two oscillators are extended to the case of two sets of oscillators and
expressions for the mean and variance of the energies and input powers developed. Later, each set of
oscillators represents the modes of vibration of a subsystem, and these modes become coupled when the
subsystems are physically connected.

The sets of oscillators are coupled by springs as shown in Fig. 2. The jth oscillator in set a (with mass mj
a,

damping cj
a and stiffness kj

a) and the kth oscillator in set b (with mass mk
b, damping ck

b and stiffness kk
b) are

connected by a spring of stiffness kjk
ab which is in general random. The system is subjected to statistically

independent, white noise excitations with spectral densities Sj
a and Sk

b for oscillators j and k over the
frequency band O. For coupled multimodal subsystems these represent the modal excitations for modes j and
k of subsystems a and b. The total input power and energy for each set, found by summing the contributions
for each oscillator, from Eqs. (1) and (2), can be written as [1]

Pa ¼
XNa

j¼1

Pa
j ¼

XNa

j¼1

1

O

pSa
j

ma
j

" #
(16)

Ea ¼
XNa

j¼1

Ea
j (17)

Here Na and Nb are the numbers of the oscillators (modes) in sets a and b whose natural frequencies are
within the frequency band O. Na and Nb are of course random variables: their means depend on the modal
densities and their variances depend on the natural frequency spacing statistics.

To determine the energies, assumptions must be made about the coupling power between each oscillator
pair. In Ref. [1], two approaches were suggested: in one the coupling power is assumed proportional to the
j
k

ab
jkK

Fig. 2. Two spring-coupled sets of oscillators.
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difference of the actual oscillator energies, in the other that it is proportional to the difference in their
‘‘blocked’’ energies. Both approaches lead to expressions which are identical if the strength of coupling is weak
or if the strength of connection is weak. The latter, ‘‘blocked’’ approach assumes expressions for the oscillator
energies equivalent to Eq. (2), giving

Ea ¼
XNa

j¼1

Ea
j ¼

XNa

j¼1

Pa
j

Da
j

�
XNb

k¼1

ðkab
jk Þ

2
ðDa

j þ Db
kÞ

ma
j mb

kQab
jk D

a
j

Pa
j

Da
j

�
Pb

k

Db
k

 !" #
(18)

where (cf. Eq. (3))

Qab
jk ¼ ½ðo

a
j Þ

2
� ðob

kÞ
2
�2 þ ðDa

j þ Db
kÞ½ðo

b
kÞ

2Da
j þ ðo

a
j Þ

2Db
k� þ
ðkab

jk Þ
2
ðDa

j þ Db
kÞ

2

ma
j mb

kD
a
j D

b
k

(19)

is determined by the properties of the jth and kth oscillators in sets a and b. In deriving Eq. (18) it is assumed
that the interaction of any pair of oscillators is not affected by the presence of the others, i.e., the two sets of
oscillators are weakly connected or coupled. Furthermore, out-of-band modes are neglected.

Now assume that the system properties are not known exactly but are random. The randomness is
introduced by assuming that the natural frequencies oj

a and ok
b of each set conform to certain, known,

statistical distributions over the frequency band O while the mass and damping of each oscillator are
deterministic. Again, this introduces a mild approximation. For simplicity, it is further assumed that each
oscillator in set a has the same mass ma and damping bandwidth Da, i.e.,

ma
j ¼ ma; Da

j ¼ Da (20),(21)

Similar assumptions apply to set b. In a similar manner to before, an approximation is introduced by
assuming that Pa,b, (kjk

ab)2 and Qjk
ab are statistically independent variables. Then the ensemble mean energy in

each set, from Eq. (18), is given by

Ea ¼
Pa

Da

�
Da þ Dbð Þ

Da

E
XNa

j¼1

XNb

k¼1

ðkab
jk Þ

2

mambQab
jk

" #
Pa

Da

�
Pb

Db

� �
(22)

The variance of the energy can be found by evaluating E[Ea
2].

Some simplifications are now introduced to illustrate the factors that contribute to the variance. If it is
further assumed that the coupling is weak, then

g2 ¼
k2

DaDb

51 (23)

where

k2 ¼
E½ðkab

jk Þ
2
�

mambo2
(24)

is the strength of connection between the two sets of oscillators. This assumption allows simplifications to be
made in a manner similar to that leading to Eqs. (12) and (13). If only set a is excited, then Pb ¼ 0 and the
variances of the energies reduce to

Var½Ea� �
Var½Pa�

D2
a

(25)

Var½Eb� �
Da þ Db

Db

� �2
Pa

Da

� �2

Var
XNa

j¼1

XNb

k¼1

ðkab
jk Þ

2

mambQab
jk

" #
(26)

Here, for simplicity, the contribution of Var[Pa] to Var[Eb] has been neglected (cf. Eqs. (14) and (15)) as is
usually the case in practice.

It is seen that, in general, the statistics of the energy of each subsystem are functions of the statistics

of the input powers Pa,b and those of the coupling coefficients ðkab
jk Þ

2
.

Qab
jk , which behave as a kind of
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‘‘energy-transfer-function’’ at the interface between the subsystems. The statistics of the input powers depend
on the number of oscillators in the frequency band O (which in turn depends on the modal density), the
natural frequency spacing distributions and the spectral densities of the excitation. In particular, Poisson and
Gaussian Orthogonal Ensemble (GOE) statistics can be used to model the natural frequency spacing
distributions for various limiting cases (e.g. Refs. [2,11]). This issue will be further considered in Section 4.1.
Once again, if only one set of oscillators is excited, the variance of the excited set depends primarily on that of
the input power (Eq. (25)), while that of the unexcited set depends primarily on the variance of the coupling
coefficients (Eq. (26)).

3.1. Statistics of the input power

The input power (Eq. (16)) depends on the number of oscillators in the band and on the spectral densities
Sj

a. For coupled multimodal subsystems these are the number of modes in the band and the spectral densities
of the modal excitations. The modal excitations depend of course on the spectral density of the physical forces
applied to the subsystem and the mode shapes.

Assuming that these are uncorrelated, it follows that

Pa ¼
1

O
p

ma

E½Na�E½S
a
j � ¼

pna

ma

S̄
a

j (27)

E½P2
a� ¼

1

O
p

ma

� �2

E½N2
a�E½S

a2
j � (28)

where it is noted that E[Na,b] ¼ na,bO. For a single point, white, random force, with a spectral density Sff,
applied to a multimodal subsystem the modal excitations are such that

S̄
a

j ¼ Sff E½fa2
j �; E½Sa2

j � ¼ S2
ff E½fa4

j � (29),(30)

where fj
a is the mode shape at the excitation point of the jth mode of subsystem a. For spatially random rain-

on-the-roof excitation (i.e., spatially uncorrelated excitation whose spectral density is proportional to the mass
density,) with a spectral density Sff,

S
a

j ¼ Sff ; E½Sa2
j � ¼ S2

ff (31),(32)

3.2. Statistics of the coupling coefficients

From Eqs. (22), (25) and (26), it is seen that the mean and variance of the energies depend on the statistics of
kjk

ab, Qjk
ab and the number of modes Na,b in the frequency band O. To estimate the mean and variance,

various simplifications and approximations are made. First, define

D ¼ ðDa
j þ Db

kÞ=2 (33)

Combining Eq. (33) with Eqs. (19)–(21), and noting that oj
a+ok

bE2o, yields

Qab
jk � 4o2 ðoa

j � ob
kÞ

2
þ D2 þ

ðkab
jk Þ

2

mambo2

 !" #
(34)

It then follows that

XNa

j¼1

XNb

k¼1

ðkab
jk Þ

2

mambQab
jk

�
1

4mambo2

XNa

j¼1

XNb

k¼1

ðkab
jk Þ

2

ðoa
j � ob

kÞ
2
þ ðD2 þ k2Þ

(35)

where as an approximation, the terms kjk
ab in the denominator have been replaced by their expectation,

Eq. (24). Eq. (35) indicates that the statistics of the coupling coefficients depend not only on the numbers of
oscillators in the frequency band and the coupling stiffnesses but also on the natural frequencies and, in
particular, the differences between them.
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If correlation between kjk
ab and the natural frequencies is neglected, then the mean of the coupling

coefficients (Eq. (35)) can be approximated as

E
XNa

j¼1

XNb

k¼1

ðkab
jk Þ

2

mambQab
jk

" #
¼

E½ðkab
jk Þ

2
�

4mambo2
E
XNa

j¼1

XNb

k¼1

1

ðoa
j � ob

kÞ
2
þ ðD2 þ k2Þ

" #

¼
k2

4
E½Na�E½Nb�

ZZ
O

pðoa
j ;o

b
kÞdo

a
j do

b
k

ðoa
j � ob

kÞ
2
þ ðD2 þ k2Þ

(36)

where p(oj
a,ok

b) is the joint probability density function of oj
a and ok

b. Given that oj
a and ok

b are natural
frequencies of completely different subsystems, it is assumed that they are uncorrelated and uniformly
distributed within the frequency band O. Consequently, the joint probability density function can be written as

pðoa
j ;o

b
kÞ ¼ pðoa

j Þpðo
b
kÞ ¼

1

O2
(37)

The double integral is evaluated by substituting do ¼ (oj
a
�ok

b) and integrating with respect to ok
b and

then do. If the damping is light enough, the limits of integration in the second integral can be replaced by
(�N,+N). Eq. (36) finally gives

E
XNa

j¼1

XNb

k¼1

ðkab
jk Þ

2

mambQab
jk

" #
�

pnanbOk2

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ k2

p (38)

A similar approach can be used to estimate the variance of the coupling coefficients. The variance is, by
definition,

Var
XNa

j¼1

XNb

k¼1

ðkab
jk Þ

2

mambQab
jk

" #
¼ E

XNa

j¼1

XNb

k¼1

ðkab
jk Þ

2

mambQab
jk

 !2
2
4

3
5� E

XNa
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XNb

k¼1

ðkab
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2

mambQab
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" #2
(39)

Now,

E
XNa

j¼1

XNb

k¼1

ðkab
jk Þ

2

mambQab
jk

 !2
2
4

3
5 ¼ E

XNa
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XNb

n¼1
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2

mambQab
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ðkab
jk Þ

2

mambQab
mn

" #
(40)

and the quadruple sum can be divided into two parts, in the first of which the indices j and m are equal, while
for the second they are different, i.e.

E
XNa

j¼1

XNb

k¼1

ðkab
jk Þ

2

mambQab
jk

 !2
2
4

3
5 ¼ E

XNa

j¼1

XNb

k¼1

kab2
jk

mambQab
jk

 !2
2
4

3
5þ E

XNa

j¼1

XNb

k¼1

kab2
jk

mambQab
jk

XNa

m¼1
maj

XNb

n¼1
nak

kab2
jk

mambQab
mn

2
64

3
75 (41)

Following lines similar to the above, and ignoring correlation between oj
a and om

a (m 6¼j), ok
b and on

b

(n 6¼k) and kjk
ab and kmn

ab (m 6¼j, n 6¼k), leads to

Var
XNa

j¼1

XNb

k¼1

ðkab
jk Þ

2

mambQab
jk

" #
¼ E Na½ �E Nb½ �E

ðkab
jk Þ

2

mambQab
jk

 !2
2
4

3
5

þ ðE½N2
a�E½N

2
b� � E½Na�

2E Nb½ �
2
� E½Na�E½Nb�ÞE

ðkab
jk Þ

2

mambQab
jk

" #2
(42)

This finally yields

Var
XNa

j¼1

XNb

k¼1

ðkab
jk Þ

2

mambQab
jk

" #
¼

pnanbOk4sab

4ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ k2

p
Þ
3

(43)
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where

sab ¼
E½ðkab

jk Þ
4
�

E½ðkab
jk Þ

2
�2
þ

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ k2

p
O

E½N2
a�E½N

2
b� � E½Na�

2E½Nb�
2

E½Na�E½Nb�
� 1

� �
(44)

is the coupling coefficient parameter. The variance of the coupling coefficients is thus caused by two effects:
the first concerns the statistics of the coupling spring stiffnesses kjk

ab while the second depends on the number
and variance of modes in the band. If the second term is much smaller than the first (which is often the case
because, typically, D5O and k25D2 for weak coupling) then

sab �
E½ðkab

jk Þ
4
�

E½ðkab
jk Þ

2
�2

(45)

3.3. Energy means and variances

An expression for the ensemble mean of the energy can be obtained by substituting Eq. (38) into Eq. (22), to
give

Ea ¼
Pa

Da

�
pnanbOk2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ k2

p Pa

Da

�
Pb

Db

� �
(46)

The variances of the energies, with Pb ¼ 0, from Eqs. (25), (26), (38) and (43), can be obtained as

Var½Ea� �
Var½Pa�

D2
a

(47)

Var½Eb� �
pnanbOk4sab

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ k2

p	 
3 Pa

Da

� �2

(48)

The mean and variance of the input power are given by Eqs. (27) and (28). The variance of the input power
depends on the expected number of modes of the excited subsystem within the band and the spectral densities
of the excitations. Note that in Eq. (47) the variance associated with the coupling parameter sab has been
neglected, while in Eq. (48) the variance associated with the input power has been neglected, for the reasons
given in deriving the approximations of Eqs. (25) and (26).

In summary, the variance of the energy of the driven subsystem (Eq. (47)) depends primarily on the variance
of the input power, which in turn depends on the number of modes of the driven subsystem and the excitation
spectral densities (Eq. (28)), while the variance of the energy of the undriven subsystem (Eq. (48)) depends
primarily on the variance of the coupling parameter which in turn depends on the variance of the coupling
stiffnesses and the number of modes in each subsystem. It is worth noting that Eqs. (46)–(48) are derived
without specific subsystem natural frequency spacing statistics having been assumed. Also the two subsystems
are allowed to possess different natural frequency statistics.

3.4. Two coupled continuous subsystems

A continuous subsystem can be regarded as a set of oscillators, each oscillator corresponding to one of the
modes of the subsystem. For two subsystems joined by a spring of stiffness K, the coupling stiffness between
the jth and kth modes of subsystems a and b is [1]

kab
jk ¼ Kfa

j ðx
a
I Þf

b
kðx

b
I Þ (49)

Here fj
a(xI

a) and fk
b(xI

b) are the jth and kth mass-normalized mode shapes of subsystems a and b at the
interface locations xI

a and xI
b. If xI

a and xI
b are assumed to be chosen randomly and are statistically
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independent then, ignoring the second term in Eq. (44), the coupling parameter sab becomes

sab ¼
E½f4

aðx
a
I Þ�

E½f2
aðx

a
I Þ�

2

E½f4
bðx

b
I Þ�

E½f2
bðx

b
I Þ�

2
(50)

If only subsystem a is excited, the relative variance of the energy of subsystem b, from Eqs. (46) and (48), is

r2Eb
¼

Var½Eb�

E½Eb�
2
�

1

O
1

pnanb 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ k2

p	 
 sab (51)

which by ignoring the second term in Eq. (44), becomes

r2Eb
�

1

O
1

pnanb 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ k2

p	 
 E½f4
aðx

a
I Þ�

E½f2
aðx

a
I Þ�

2

E½f4
bðx

b
I Þ�

E½f2
bðx

b
I Þ�

2
(52)

In Ref. [2] (Eq. (4.2.14)), it is shown that, if subsystems a and b are joined at a single point and subsystem a

is excited by a point force applied at a random point xs
a, then the relative variance of the mean square velocity

response of the receiving subsystem b at a randomly chosen observation point xr
b is

r2
V2

b

�
1

O
2

pnanbðDa þ DbÞ

�
E½f4

aðx
b
r Þ�

E½f2
aðx

b
r Þ�

2

E½f4
bðx

a
s Þ�

E½f2
bðx

a
s Þ�

2

E½f4
aðx

a
I Þ�

E½f2
aðx

a
I Þ�

2

E½f4
bðx

b
I Þ�

E½f2
bðx

b
I Þ�

2
(53)

xI
a and xI

b are the coupling points on subsystems a and b. In deriving Eq. (53), both subsystems were assumed
to conform to Poisson natural frequency spacing statistics. If the source subsystem a is subjected to rain-on-
the-roof forcing, the space-averaged mean square response of the receiving subsystem b becomes

r2
V2

b

�
1

O
2

pnanbðDa þ DbÞ

E½f4
aðx

a
I Þ�

E½f2
aðx

a
I Þ�

2

E½f4
bðx

b
I Þ�

E½f2
bðx

b
I Þ�

2
(54)

It is seen that Eq. (52) reduces to Eq. (54) for the case of weak coupling, for which D2k2, apart from a factor
of 2.

In Ref. [12], the ensemble variances of the energies of built-up SEA subsystems were estimated under the
assumption of GOE natural frequency spacing statistics, the main results being summarized in Appendix A. In
the case of a single point coupling, the relative variance of the energy of the receiver subsystem is given by

r2Eb
�

1

Onb

a
E½f4

b�

E½f2
b�
2
� 1

 !
(55)

where a ¼ 2 if no average is taken over the coupling locations before the ensemble average is performed, and
a ¼ 1 if an average is taken over many coupling locations before ensemble averaging.

It is seen that Eqs. (52) and (55) are dissimilar in form. This is mainly because, in deriving Eq. (45) and
hence Eq. (52), it is assumed that the contribution of out-of-band modes can be neglected so that the frequency
range of integration for those modes which lie inside O can be extended to (0, N), while Eq. (55) applies when
the system has a modal overlap larger than 0.6 [11]. These issues will be further discussed in Section 4.4.

4. Poisson and GOE natural frequency spacing statistics

From Eqs. (46)–(48), it is seen that the statistics of the energies depend on the statistics of the input powers
(Eqs. (27) and (28)) and those of the coupling parameters (Eqs. (24) and (45)), which in turn depend on the
statistics of the number of modes in the frequency band O and the statistics of the mode shapes of the
subsystems. In this section, the current approach is applied to coupled subsystems whose natural frequency
spacings are assumed to conform to two common forms for dynamic systems, namely Poisson [2] and GOE
[17] natural frequency spacing statistics. Poisson statistics are typical of separable geometries [2], while GOE
statistics are believed to be asymptotically realistic for systems with irregularity [17]. Other forms of natural
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frequency spacing statistics, e.g. semi-Poisson statistics [18], are not discussed here. Spatially random, rain-on-
the-roof excitation, as often encountered in SEA, is considered, for simplicity. For other forms of excitation,
Eqs. (46)–(48) are directly applicable, though.

4.1. Definitions of Poisson and GOE statistical distributions

For Poisson distribution, the probability density function of the natural frequency spacings is [16]

pðdoÞ ¼ ne�ndo ; do40 (56)

where n is the modal density.
For a dynamic system with Poisson natural frequency spacing statistics, the ensemble mean and variance of

the number of modes lying inside the frequency band O are given by [16]

E½N� ¼ nO (57)

Var½N� ¼ nO (58)

Under the GOE assumption, the spacing of successive eigenvalues has a probability density function [15]

pðdoÞ ¼
p
2
do

	 

e� ðp=2Þdoð Þ

2

(59)

For a dynamic system with GOE natural frequency spacing statistics, E[N] remains the same as that given in
Eq. (57), while the ensemble variance becomes [15]

Var½N� ¼ 2 lnðnOÞ=p2 þ 0:44 (60)

4.2. Random subsystems with Poisson natural frequency spacing statistics

The ensemble mean and variance of the input power, with subsystem a subjected to rain-on-the-roof
excitation Sf

a, from Eqs. (27), (28), (57) and (58), are:

Pa ¼
pSa

f

ma

na (61)

Var½Pa� ¼
na

O

pSa
f

ma

� �2

(62)

Combining Eqs. (61) with Eq. (46), the mean energy of subsystem a is given by

Ea ¼
pSa

f

maDa

na �
pnanbk2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ k2

p pSa
f

maDa

�
pSb

f

mbDb

 !
(63)

The energy variance for the driven subsystem a, from Eqs. (47) and (62), is

Var½Ea� �
na

O

pSa
f

maDa

� �2

(64)

while the energy variance of the undriven subsystem b, from Eq. (48) and (62), is

Var½Eb� �
pnanbOk4sab

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ k2

p	 
3 pSa
f

maDa

� �2

(65)

In the above equations, the coupling parameters k2 and sab are defined in Eqs. (24) and (45), respectively,
and depend on the statistics of kjk

ab. Generally, kjk
ab are functions of the subsystem mode shapes at the

interfaces and the coupling stiffness of the interfaces. For example, for two subsystems coupled by NI discrete
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springs, kjk
ab between the jth and the kth modes of subsystems a and b is given by [19]

kab
jk ¼

X
nI¼1;NI

fa
j ðx

a
nI
ÞKnI

fb
kðx

b
nI
Þ (66)

where KnI is the stiffness of the nIth spring. Substituting Eq. (66) into Eqs. (24) and (45), respectively, yields

k2 �
1

MaMbo2
c

XNI

nI¼1

K2
nI

 !
(67)

sab � 3þ
1

NI

E½K4
nI
�

E½K2
nI
�2

E½f4
a�

E½f2
a�
2

E½f4
b�

E½f2
b�
2
� 3

 !
(68)

Clearly sab depends on the modal shape statistics E[f4]/E[f4]2 of each subsystem. For example, E[f4]/
E[f4]2 ¼ 2.25 for a two-dimensional dynamic system with sinusoidal mode shapes [2]. Meanwhile, Eq. (68)
indicates that, for many coupling points, i.e., large NI, sab is asymptotic to 3 regardless of the exact subsystem
modal shape statistics, which in turn implies that the variance of the power exchanged between the two
coupled subsystems tends to be independent of the exact mode shape statistics of each subsystem.

4.3. Subsystems with GOE natural frequency spacing statistics

Combining Eqs. (57) and (60) with (27) and (28), gives

Pa ¼
pSa

f

ma

na (69)

Var½Pa� ¼
1

O2p2
½2 lnðnaOÞ þ 0:44p2�

pSa
f

ma

� �2

(70)

Comparing Eqs. (61) and (62) with (69) and (70), it is seen that the mean of the power is independent of the
subsystem natural frequency statistics, while the variance of the power depends on the subsystem natural
frequency statistics. The variance based on the assumption of GOE natural frequency statistics [17] is much
smaller than that from the assumption of Poisson statistics.

Substituting Eqs (69) and (70) into (46)–(48), leads to

Ea ¼
pSa

f

maDa

na �
pnanbk2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ k2

p pSa
f

maDa

�
pSb

f

mbDb

 !
(71)

Var½Ea� �
1

O2

2 lnðnaOÞ
p2

þ 0:44

� �
pSa

f

maDa

� �2

(72)

Var½Eb� �
pnanbOk4sab

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ k2

p	 
3 pSa
f

maDa

� �2

(73)

Note that, k2 and sab are the same expressions as those given in Eqs. (67) and (68) for the case of multiple
spring couplings, apart from the fact that E[f4]/E[f2]2 in Eq. (68) equals 2.75 for a two-dimensional system
with GOE mode shape statistics [17]. (E[f4]/E[f2]2E2.25 for a two-dimensional system with Poisson
statistics.) This suggests that the variance of the energy exchanged between the coupled subsystems predicted
from Poisson statistics and that from GOE statistics may differ only slightly as the number of coupling springs
increases.

4.4. Estimate of sab for subsystems with large modal bandwidths

Strictly speaking, sab in Eq. (45) is derived by assuming each subsystem mode to have a small modal
bandwidth and that O is large enough so that the response can be well approximated by only considering the
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modes whose natural frequencies lie within the frequency band O. However, if this is not the case, then out-of-
band modes might contribute significantly. In this case, the estimate of sab given in Eq. (45) will unavoidably
cause certain ‘‘cut-off’’ errors in that the effect of the out-of-band modes has been neglected, which in turn can
cause the energy variance to be underestimated. This is the cause of the differences between Eqs. (52) and (55)
in Section 3.4.

In this situation, therefore, sab should be modified for large modal overlap (e.g. nD41) and small O cases
instead of using the direct calculation of Eq. (45). This is achieved using the results of other established
theories [2,11–12]. Details are given below.

From the coupled oscillator theory [1], the coupling loss factor Zab [2] is given by

onaZab �
pk2nanb

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ k2

p D (74)

The relative variance of Zab, by the current theory, can be found from the previous expressions for energies
and input powers, and is given by

r2Zab
�

1

O
sab

pnanb 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ k2

p	 
 (75)

Under the assumptions of Poisson and GOE natural frequency spacing statistics [17], the relative variances
of Zab, by Lyon and DeJong [2] (Eq. (12.3.7)) and Langley and Cotoni [11] (Eq. (39)), respectively, are:

r2Zab
�

1

pðnaDa þ nbDbÞ þ Oðna þ nbÞ

E½f4
a�

E½f2
a�
2

E½f4
b�

E½f2
b�
2

(76)

r2Zab
�
ðaab � 1Þ

pnaO
p� 2 tan�1

1

Ba

� �
�

lnð1þ B2
aÞ

Ba

� �
þ

lnð1þ B2
aÞ

ðpnaOÞ
2

(77)

Both Eqs. (76) and (77) assume high modal overlap (e.g. pnb1). In Eq. (77), Ba ¼ O/Da, and aab is a
parameter which depends on the mode shape statistics of the two subsystems and the nature of the coupling. A
compendium of values aab has been derived for a wide range of subsystem couplings and is given in Ref. [12].
For example, if there are NI distinct connection points then

aab � 2þ
2

NI

E½f4
b�

E½f2
b�
2
� 1

 !
(78)

In-line with the results given in Eqs. (75)–(77), sab, under the assumptions of Poisson and GOE natural
frequency spacing statistics, can be estimated, respectively, as

sab � pnD
E½f4

a�

E½f2
a�
2

E½f4
b�

E½f2
b�
2
ðpnD41; PoissonÞ (79)

sab � pnD½2ðaab � 1Þ� ðpnD41; GOEÞ (80)

where n ¼ (na+nb)/2.
5. Numerical examples

In this section, examples of two plates coupled either by one or two springs, as shown in Fig. 3, are
considered. The driven plate subsystem is assumed to have Poisson natural frequency statistics while the
undriven plate has GOE statistics. The ensemble mean and variance of energy of each plate are predicted by
the present theory and compared with results from Monte Carlo simulations.
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Fig. 3. Two spring-coupled plates: (a) by a single spring; (b) by two springs.
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Fig. 4. The connection strength parameter k2 (Eq. (24)) for both single- and two-spring coupling models.
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5.1. Description of the systems

In Fig. 3, plate 1 is rectangular with simply supported edges and an area of 0.32m2, and plate 2 is a
rectangular plate with an area of 0.23m2 but with a curved region of area 0.02m2 cut off at one corner,
equivalent in size to a hole of diameter 0.16m.

The material is perspex with Young’s modulus 108N/m2, density 103 kg/m3, Poisson ratio 0.38 and material
damping loss factor 0.01. The modal densities of plates 1 and 2 are 0.08 and 0.06modes/rad/s, respectively.
The frequency range considered is up to 3000 rad/s, which contains approximately 240 and 180 modes of
plates 1 and 2, respectively, and gives a modal overlap factor up to 2.4 for plate 1 and up to 1.8 for plate 2. The
spring stiffness is 500N/m in Fig. 3a while in Fig. 3b the stiffness of each spring is 353.6N/m. (In this case the
coupling strengths are the same for Figs. 3a and b.) The corresponding strength of connection and strength of
coupling parameters k2 (Eq. (24)) and g2 (Eq. (23)) are shown in Figs. 4 and 5, respectively. Both decrease as
frequency increases. In Fig. 5 it is seen that g2E0.1 at about 500 rad/s, so that the plates can be regarded as
being weakly coupled for frequencies above 500 rad/s.

The systems are randomized by perturbating the geometry of each subsystem, i.e. by varying the dimensions
of the plate while keeping the plate area, and hence the modal density remains constant. For plate 1, the aspect
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Fig. 5. The coupling strength parameter g2 (Eq. (23)) for both single- and two-spring coupling models.
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distribution.
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ratio (length/width) is varied with a uniform probability density function between 0.8 and 1.2, and, for plate 2,
the curved cut-off is randomly chosen over the plate surface. Thirty samples are generated for each plate
ensemble, giving an ensemble of 900 coupled systems. It is known [19] that integrable dynamics generally leads
to Poisson statistics while completely chaotic dynamics to GOE. Consequently the natural frequency spacing
statistics of plate 1 are expected to conform to Poisson statistics while those of plate 2 ensemble approximately
to GOE. The natural frequency spacing statistics of plates 1 and 2 (normalized by the mean natural frequency
spacing of the corresponding plate) are shown in Figs. 6 and 7, which are not inconsistent with these
assumptions.



ARTICLE IN PRESS

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Normalized frequency spacing

P
D

F 
of

 n
at

ur
al

 fr
eq

ue
nc

y 
sp

ac
in

gs

Fig. 7. Probability density function (PDF) of natural frequency spacing distribution of plate 2: ——, simulation; - - - -, Rayleigh

distribution.

0 500 1000 1500 2000 2500 3000
-70

-60

-50

-40

-30

-20

-10

Frequency (rad/s)

E
ne

rg
y 

(d
B

 re
f: 

1J
)

Fig. 8. Ensemble mean of energy for Case 1 with a single-spring coupling. Plate 1: ——, Monte-Carlo simulation; - . - . -, theoretical
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Plate 1 is assumed to be subjected to rain-on-the-roof forcing of unit power spectral density over a
frequency bandwidth O ¼ 0.1oc, where oc is the centre frequency of the band O.

5.2. A single spring coupling

Fig. 8 shows the mean energies of the two plate ensembles predicted by the present theory and by the Monte
Carlo simulations. It is seen that the two sets of results agree very well for the weak coupling region (above
500 rad/s).
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Fig. 9 shows the relative variances predicted by the present theory and the Monte Carlo simulations. It is
seen, as expected, that, for plate 1, the Poisson-based prediction (Eq. (64)) agrees significantly better with the
Monte Carlo solution than the GOE-based one (Eq. (72)), while for plate 2, the opposite is true. This suggests
that the variance of the energy of each subsystem is largely dominated by the properties of that subsystem. The
relative variance of the receiver plate is larger than that of the source plate. Note that, for the source plate, the
relative variance for Poisson statistics is much larger than that for GOE statistics.

Figs. 10 and 11 show the ensemble mean and variance of energy of the plates when the system damping loss
factor is 0.001. (The maximum modal overlap factors of both plates are less than 0.2.) Weak coupling occurs
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Fig. 9. Relative variance of energy for Case 1 with a single-spring coupling. Plate 1: , Monte-Carlo simulation; ——, Poisson-

based prediction; - . - . -, GOE-based prediction. Plate 2: , Monte-Carlo simulation; . . . . . . . . . . . , Poisson-based

prediction; - - - -, GOE-based prediction.
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Fig. 10. Ensemble mean of energy for Case 1 with a low damping Z ¼ 0.001. Plate 1: ——, Monte-Carlo simulation; - . - . -, theoretical

prediction. Plate 2: . . . . . . . . . . . , Monte-Carlo simulation; - - - -, theoretical prediction.
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for frequencies above 1500 rad/s. The present theory provides reasonably accurate predictions for the
ensemble mean energy even for the frequencies below 1500 rad/s. For the variance of the energy, however,
the accuracy is less good unless the coupling is weak. In Fig. 11 the variances are predicted based on the
estimate of sab from Eq. (68) rather than that from Eqs. (79) and (80). For the receiver plate, the variance is
dominated by the coupling coefficient sab, while for the source plate, its variance is mainly affected by the
excitation type and the statistics of source plate itself but relatively much less affected by the couplings with
other subsystems.
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Fig. 11. Relative varaince of energy for Case 1 with a low damping Z ¼ 0.001. Plate 1: , Monte-Carlo simulation; ——, Poisson-

based prediction; - . - . -, GOE-based prediction. Plate 2: , Monte-Carlo simulation; . . . . . . . . . . . , Poisson-based

prediction; - - - -, GOE-based prediction.
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prediction. Plate 2: . . . . . . . . . . . , Monte-Carlo simulation; - - - -, theoretical prediction.
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5.3. Multiple spring connections

From Eq. (67), the connecting strength for two subsystems connected by NI springs is equivalent to that

when the two subsystems are connected by a single spring with stiffness Kequi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
nI¼1;NI

K2
nI

q
. Thus the

connection strength for Fig. 3b is equal to that for Fig. 3a.
Figs. 12 and 13 show the ensemble mean and variance of the plate energies for the multi-coupling case.

Comparing Fig. 12 with Fig. 8, it is seen that the ensemble mean energies are almost the same because the
connection strengths for the two cases are equal. Comparing Fig. 13 with Fig. 9, however, it is seen that the
relative variances in Fig. 13 are smaller than those in Fig. 9 because there are more coupling points.

6. Concluding remarks

In this paper, expressions were derived for the ensemble means and variances of the subsystem energies of
systems comprising two subsystems. The approach is based on the Statistical Energy Analysis of two spring-
coupled oscillators and sets of oscillators, or coupled continuous subsystems, described in Ref. [1].
Randomness was introduced into the system by assuming that the natural frequency spacings in each
subsystem conform to certain statistical distributions. A coupling coefficient parameter (Eq. (45)) was
introduced which, together with the coupling strength parameter (Eq. (24)) defined in Ref. [1], accounts for the
statistics of the coupling stiffness. Various approximations and assumptions were made, in particular, for the
estimation of the coupling coefficient parameter in Section 3.2.

The theory shows that the variance of the excited subsystem depends primarily on the variance of the input
power, which in turn depends on the variance of the number of modes of the excited subsystem in the
frequency band of excitation and their mode shapes. The variance of the undriven subsystem, on the other
hand, depends primarily on the variance of the intermodal coupling coefficients, which in turn depend on the
variances of the number of in-band modes of both subsystems and their mode shapes. The system may have a
very low damping (and hence a low modal overlap), provided the weak coupling condition in Eq. (23) is met.
Numerical examples were presented.

One of the main assumption of the presented theory was that, for a given bandwidth of excitation O, only
those modes whose natural frequencies lie within O contribute to the response, and their contribution can be
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estimated by extending O to the range of infinity. In this case, the resulting equations become relatively very
simple, which helps to shed insight into the underlying behaviour. In principle, however, out-of-band modes
and the fact that O has a finite bandwidth could both be involved, although the results become substantially
more complicated.

Finally, the analysis can be extended to cases of arbitrary interface coupling, and results will be reported
elsewhere.
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Appendix

In this appendix some results from two major existing variance predicting theories in Refs. [2,12] are briefly
reviewed.

For a built-up system, the power–energy relation, when frequency-averaged, is

P ¼ DE (A.1)

where P and E are vectors of frequency-averaged input power, and subsystem energy, respectively, and D is a
matrix of damping and coupling loss factors.

In Ref. [2], under the assumption of Poisson natural frequency statistics, the relative variance of the input
power for rain-on-the-roof forcing, is ([2], Eq. (12.3.5))

r2Pk
�

1

pnkDk þ nkO
(A.2)

And the relative variance of the coupling loss factor entry is (Ref. [2], Eq. (12.3.7))

r2Z;ks
�

1

pðnkDk þ nsDsÞ þ Oðnk þ nsÞ

� �
E½f4

kðx
k
I Þ�

E½f2
kðx

k
I Þ�

2

E½f4
s ðx

s
I Þ�

E½f2
s ðx

s
I Þ�

2
(A.3)

Under the assumption of GOE natural frequency statistics, the relative variance of the input power for rain-
on-the-roof forcing, is ([12], Eq. (A.2))

r2Pk
�

1

ðOnkÞ
2

2 lnðOnkÞ

p2
þ 0:44

� �
(A.4)

The relative variance of the coupling loss factor is ([12], Eq. (39))

r2Zks
�

1

O
ðaks � 1Þ

pnk

p� 2tan�1
1

Bk

� �
�

lnð1þ BkÞ

Bk

� �
þ

1

ðpnkOÞ
2
lnð1þ B2

kÞ (A.5)

All the symbols in Eqs. (A.2)–(A.5) have the same meaning as in the previous sections of this paper, except
that Dk,s correspond to the effective in-situ loss factors of the relevant subsystems [2,12].

It is worth noting that Eq. (A.3) is based on a heuristic modification for the effect of band averaging under
the assumption of Poisson natural frequency spacing statistics [2]. This contrasts to Eq. (A.5), which is
developed rigorously under the assumption of GOE natural frequency spacing statistics [12].
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